
Terrain Instancing using height-maps 
 

Research and Development 
Subhir Rao 

 
Step 1: Create a mesh of triangles, with vertices at every unit point, of size 33x33. 
That should give you a model with 1089 vertices and 2048 triangles. This is the 
mesh we are going to instance. The reason for 33x33 is to allow the instanced 
meshes to overlap, so we don’t have to be concerned with stitching the meshes 
together. 
 
Step 2: Create your vertex declaration for instancing. In our implementation, we use 
four float4 variables (fog, bi-normal, tangent and blend-weights) in the second 
stream to store our world matrix. The method of recreating the world matrix is of 
little importance, so it can also be done differently if desired. The first stream is also 
up to the user and in our case, has two vector3 variables for position and normal and 
one vector2 for the texture coordinate. 
 
Step 3: Create the instance data, instance buffer and store the relative world 
matrices in them. We decided to instance the terrain 64 times, centered on the 
player’s current position, in an 8x8 grid. This gave us enough coverage so you can 
see the terrain at all times without open holes and without too much of a 
performance hit. The result of instancing was to give us a total of 65,536 vertices 
and 123,008 triangles (not including overlap). 
 
Step 4: Then just draw the model along with the instance data and you are done. 
Well not quite, you still need to do some things with this instanced mesh in the 
shader. The first thing is to unpack the world matrix from the second stream. Then in 
the vertex shader, multiply each incoming vertex’s position with the unpacked world 
matrix. Check the new x and z values of the vertex position to ensure that it is 
between 0.0f and the game environment size. 
 If it isn’t, set the texture coordinates to -1.0f and then discard the pixel, in 
the fragment shader. 
 If it is, then we have got ourselves a vertex which will be a part of the terrain. 
Get the vertex’s actual texture coordinates by dividing its new position by the size of 
your terrain. Then using the new texture coordinates, lookup the vertex’s normal 
from a texture which stores the terrain normals. And use the new texture 
coordinates to retrieve the vertex’s height from our height map. 
 
That’s it! 


